
Sampling a Neighbor in High Dimensions

Who is the fairest of them all?

Martin Aumüller
IT University of

Copenhagen

Sepideh Mahabadi
MSR Redmond

Joint work with

Sariel Har-Peled
UIUC

Rasmus Pagh
BARC and

University of
Copenhagen

Francesco Silvestri
University of Padova

Main motivation in the context of Fairness

Goal of fairness: Remove or minimize the harm caused by the algorithms
• Bias in data
• Bias in the data structures that handle it

Main motivation in the context of Fairness

Goal of fairness: Remove or minimize the harm caused by the algorithms
• Bias in data
• Bias in the data structures that handle it

This work:
• Selection bias, not introduce it
• Report uniformly at random an item from acceptable outcomes
• Similarity search (Near Neighbor problem)

Main motivation in the context of Fairness

Goal of fairness: Remove or minimize the harm caused by the algorithms
• Bias in data
• Bias in the data structures that handle it

This work:
• Selection bias, not introduce it
• Report uniformly at random an item from acceptable outcomes
• Similarity search (Near Neighbor problem)

 No unique definition of fairness, e.g.
• Group fairness: demographics of the population are preserved in the

outcome
• Individual fairness: treat individuals with similar conditions similarly, equal

opportunity

Individual Fairness in Searching

• 27% of senators are women

senator

Individual Fairness in Searching

• 27% of senators are women
• Searching for job applicants (e.g. LinkedIn suggestions)

senator

Plan for the talk

• Nearest neighbor
• Sampling version/ fair version
• Applications
• Algorithms

• Basic Algorithm
• Improving the dependence on 𝜖𝜖
• Handling Outliers
• Improving the dependence on the neighborhood

Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑,
and a parameter 𝑟𝑟

Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑,
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

𝑞𝑞

𝑟𝑟

Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑,
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal:
• Find a point 𝑝𝑝∗ in the 𝑟𝑟-neighborhood

𝑞𝑞
𝑝𝑝∗

𝑟𝑟

Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑,
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal:
• Find a point 𝑝𝑝∗ in the 𝑟𝑟-neighborhood
• Do it in sub-linear time and small space

𝑞𝑞
𝑝𝑝∗

𝑟𝑟

Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑,
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal:
• Find a point 𝑝𝑝∗ in the 𝑟𝑟-neighborhood
• Do it in sub-linear time and small space

All existing algorithms for this problem
• Either space or query time depending exponentially on 𝑑𝑑
• Or assume certain properties about the data, e.g., bounded intrinsic dimension

𝑞𝑞
𝑝𝑝∗

𝑟𝑟

Approximate Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑,
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal:
• Find a point 𝑝𝑝∗ in the 𝑟𝑟-neighborhood
• Do it in sub-linear time and small space
• Approximate Near Neighbor

─ Report a point in distance c𝑟𝑟 for c > 1

𝑞𝑞
𝑝𝑝

𝑟𝑟
𝑐𝑐𝑟𝑟

Approximate Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑,
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal:
• Find a point 𝑝𝑝∗ in the 𝑟𝑟-neighborhood
• Do it in sub-linear time and small space
• Approximate Near Neighbor

─ Report a point in distance c𝑟𝑟 for c > 1
─ For Hamming (and Manhattan) query time is 𝑛𝑛𝑂𝑂(1/𝑐𝑐) [IM98]

─ and for Euclidean it is 𝑛𝑛𝑂𝑂(1
𝑐𝑐2

) [AI08]

𝑞𝑞
𝑝𝑝

𝑟𝑟
𝑐𝑐𝑟𝑟

Fair Near Neighbor

Report one of the neighbors uniformly at random

 Individual fairness: every neighbor has the same chance of being reported.
 Remove the bias inherent in the NN data structure (also for the downstream

tasks)

 Fair Near Neighbor as a NN sampling problem:
• Sample a point in the neighborhood of the query uniformly at random

Beyond Fairness: When random nearby-by is better than the nearest

 Robustness: input is noisy, and the closest point might be an unrepresentative outlier

(e.g. why knn is beneficial in reducing the effect of noise)

Beyond Fairness: When random nearby-by is better than the nearest

 Robustness: input is noisy, and the closest point might be an unrepresentative outlier

(e.g. why knn is beneficial in reducing the effect of noise)

 KNN-Classification

Applications beyond Fairness: KNN - Classification

 Data set of points, each has a label
 Given a query: find the closest K neighbors to the query

Applications beyond Fairness: KNN - Classification

 Data set of points, each has a label
 Given a query: find the closest K neighbors to the query
 Compute the majority label ℓ
 Assign the label ℓ to the query

Applications beyond Fairness: KNN - Classification

 Data set of points, each has a label
 Given a query: find the closest K neighbors to the query
 Compute the majority label ℓ
 Assign the label ℓ to the query

 small values of k, are not robust
 large values are not time efficient

Instead: sample a few points in the neighborhood and assign the label based on
the majority of sampled points

Beyond Fairness: When random nearby-by is better than the nearest

 Robustness: input is noisy, and the closest point might be an unrepresentative outlier

(e.g. why knn is beneficial in reducing the effect of noise)

 KNN-Classification

 Statistical Queries: estimate the number of items with a desired property in the

neighborhood.

Beyond Fairness: When random nearby-by is better than the nearest

 Robustness: input is noisy, and the closest point might be an unrepresentative outlier

(e.g. why knn is beneficial in reducing the effect of noise)

 KNN-Classification

 Statistical Queries: estimate the number of items with a desired property in the

neighborhood.

 Filtered Searching

Applications beyond Fairness: Filtered Searching

 Apply filters on top of our search.

 E.g. in a shopping scenario, person
looking for “blue” shoes
 Searches for “shoes”
 Adds a filter of color being “blue”

Applications beyond Fairness: Filtered Searching

 Apply filters on top of our search.

 E.g. in a shopping scenario, person
looking for “blue” shoes
 Searches for “shoes”
 Adds a filter of color being “blue”

 If the desired property is common in the
neighborhood:
 Retrieve random shoes until blue

shoes are found.
 Can be combined with a different

procedure for rare filters

Beyond Fairness: When random nearby-by is better than the nearest

 Robustness: input is noisy, and the closest point might be an unrepresentative outlier

(e.g. why knn is beneficial in reducing the effect of noise)

 KNN-Classification

 Statistical Queries: estimate the number of items with a desired property in the

neighborhood.

 Filtered Searching

 Anonymizing the data

Beyond Fairness: When random nearby-by is better than the nearest

 Robustness: input is noisy, and the closest point might be an unrepresentative outlier

(e.g. why knn is beneficial in reducing the effect of noise)

 KNN-Classification

 Statistical Queries: estimate the number of items with a desired property in the

neighborhood.

 Filtered Searching

 Anonymizing the data

 Diversifying the output (e.g. in a recommendation system)

Problem formulation and our results

Fair Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑,
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal:
• Return each point 𝑝𝑝 in the neighborhood of 𝑞𝑞 with uniform probability
• Do it in sub-linear time and small space

𝑞𝑞1
2

𝑟𝑟 1
2

Approximately Fair Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑,
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal of Approximately Fair NN
─ Any point 𝑝𝑝 in 𝑁𝑁(𝑞𝑞, 𝑟𝑟) is reported with “almost uniform” probability, i.e.,
𝜆𝜆𝑞𝑞(𝑝𝑝) where

1
1 + 𝜖𝜖 𝑁𝑁 𝑞𝑞, 𝑟𝑟

≤ 𝜆𝜆𝑞𝑞(𝑝𝑝) ≤
1 + 𝜖𝜖
𝑁𝑁 𝑞𝑞, 𝑟𝑟

𝑞𝑞1
2

+ 𝜖𝜖

𝑟𝑟 1
2
− ϵ

Further notes

Need Independence
• Need a Fresh Sample each time, i.e., require independence between queries:

𝐏𝐏𝐏𝐏 𝒐𝒐𝒐𝒐𝒕𝒕𝒊𝒊,𝒒𝒒𝒊𝒊 = 𝒑𝒑 𝒐𝒐𝒐𝒐𝒕𝒕𝒊𝒊−𝟏𝟏,𝒒𝒒𝒊𝒊−𝟏𝟏 = 𝒑𝒑𝒊𝒊−𝟏𝟏, … ,𝒐𝒐𝒐𝒐𝒕𝒕𝟏𝟏,𝒒𝒒𝟏𝟏 = 𝒑𝒑𝟏𝟏 ≈
𝟏𝟏

𝑵𝑵 𝒒𝒒, 𝒓𝒓

Further notes

Need Independence
• Need a Fresh Sample each time, i.e., require independence between queries:

𝐏𝐏𝐏𝐏 𝒐𝒐𝒐𝒐𝒕𝒕𝒊𝒊,𝒒𝒒𝒊𝒊 = 𝒑𝒑 𝒐𝒐𝒐𝒐𝒕𝒕𝒊𝒊−𝟏𝟏,𝒒𝒒𝒊𝒊−𝟏𝟏 = 𝒑𝒑𝒊𝒊−𝟏𝟏, … ,𝒐𝒐𝒐𝒐𝒕𝒕𝟏𝟏,𝒒𝒒𝟏𝟏 = 𝒑𝒑𝟏𝟏 ≈
𝟏𝟏

𝑵𝑵 𝒒𝒒, 𝒓𝒓

Pior Work
• In low dimensions, “Independent Range Sampling” [Xiaocheng Hu,

Miao Qiao, and Yufei Tao.]
• Exponential dependence on dim runtime

Results on (1 + 𝜖𝜖)-Approximate Fair NN

 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

Domain Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 +
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

𝑞𝑞

𝑟𝑟

Results on (1 + 𝜖𝜖)-Approximate Fair NN

 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

𝑞𝑞

𝑟𝑟
𝑞𝑞

𝑟𝑟
𝑐𝑐𝑟𝑟

Domain Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 +
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

�𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

Results on (1 + 𝜖𝜖)-Approximate Fair NN

 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

 Dependence on 𝜖𝜖 is O(log(1
𝜖𝜖
))

Domain Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 +
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

�𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

Results on (1 + 𝜖𝜖)-Approximate Fair NN

 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

 Dependence on 𝜖𝜖 is O(log(1
𝜖𝜖
))

 Black-box reduction

Domain Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 +
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

�𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

Results on (1 + 𝜖𝜖)-Approximate Fair NN

 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

 Dependence on 𝜖𝜖 is O(log(1
𝜖𝜖
))

 Black-box reduction

Our approach solves a more general problem

Domain Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 +
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

�𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

Results on (1 + 𝜖𝜖)-Approximate Fair NN

 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

 Dependence on 𝜖𝜖 is O(log(1
𝜖𝜖
))

 Black-box reduction

Our approach solves a more general problem

 Experiments (Naïve randomization of ANN is not fair)

Domain Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 +
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

�𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

Locality Sensitive Hashing (LSH) [Indyk, Motwani’98]

One of the main approaches to solve the Nearest Neighbor problems

Locality Sensitive Hashing (LSH)

Hashing scheme s.t. close points have higher probability of collision than far points

Locality Sensitive Hashing (LSH)

Hashing scheme s.t. close points have higher probability of collision than far points
Hash functions: 𝑔𝑔1 , … ,𝑔𝑔𝐿𝐿

• 𝑔𝑔𝑖𝑖 is an independently chosen hash function

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿

Locality Sensitive Hashing (LSH)

Hashing scheme s.t. close points have higher probability of collision than far points
Hash functions: 𝑔𝑔1 , … ,𝑔𝑔𝐿𝐿

• 𝑔𝑔𝑖𝑖 is an independently chosen hash function

If 𝑝𝑝 − 𝑝𝑝𝑝 ≤ 𝑟𝑟 , they collide w.p. ≥ 𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ
If 𝑝𝑝 − 𝑝𝑝𝑝 ≥ 𝑐𝑐𝑟𝑟 , they collide w.p. ≤ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙

For 𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ ≥ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙
𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿

Locality Sensitive Hashing (LSH)

Retrieval: [Indyk, Motwani’98]
• The union of the query buckets is roughly the

neighborhood of 𝑞𝑞

• ⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 is roughly the neighborhood
• Contains all points within distance 𝑟𝑟
• Contains at most 𝐿𝐿 outlier points (farther than 𝑐𝑐𝑟𝑟) 𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿

𝑞𝑞

Locality Sensitive Hashing (LSH)

Retrieval: [Indyk, Motwani’98]
• The union of the query buckets is roughly the

neighborhood of 𝑞𝑞

• ⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 is roughly the neighborhood
• Contains all points within distance 𝑟𝑟
• Contains at most 𝐿𝐿 outlier points (farther than 𝑐𝑐𝑟𝑟)

• How to report a uniformly random neighbor
from union of these buckets?

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿

𝑞𝑞

Locality Sensitive Hashing (LSH)

Retrieval: [Indyk, Motwani’98]
• The union of the query buckets is roughly the

neighborhood of 𝑞𝑞

• ⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 is roughly the neighborhood
• Contains all points within distance 𝑟𝑟
• Contains at most 𝐿𝐿 outlier points (farther than 𝑐𝑐𝑟𝑟)

• How to report a uniformly random neighbor
from union of these buckets?

• Collecting all points might take 𝑂𝑂(𝑛𝑛) time

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿

𝑞𝑞

A more general problem
Sampling from a sub-collection of Sets

Sampling from a sub-collection of sets

Preprocess: a collection ℱ of subsets of a universe 𝑈𝑈

Sampling from a sub-collection of sets

Preprocess: a collection ℱ of subsets of a universe 𝑈𝑈
• E.g. in LSH: all buckets in all hash tables

Sampling from a sub-collection of sets

Preprocess: a collection ℱ of subsets of a universe 𝑈𝑈
• E.g. in LSH: all buckets in all hash tables

Query: a sub-collection 𝒢𝒢 ⊆ ℱ
• E.g. in LSH: buckets corresponding to the query

Sampling from a sub-collection of sets

Preprocess: a collection ℱ of subsets of a universe 𝑈𝑈
• E.g. in LSH: all buckets in all hash tables

Query: a sub-collection 𝒢𝒢 ⊆ ℱ
• E.g. in LSH: buckets corresponding to the query

Goal: report a point uniformly at random from ⋃𝒢𝒢 = ⋃𝐹𝐹∈𝒢𝒢 𝐹𝐹
• Runtime of |𝒢𝒢|, (e.g. in LSH: the number of hash functions 𝐿𝐿)

Sampling from a sub-collection of sets

Preprocess: a collection ℱ of subsets of a universe 𝑈𝑈
• E.g. in LSH: all buckets in all hash tables

Query: a sub-collection 𝒢𝒢 ⊆ ℱ
• E.g. in LSH: buckets corresponding to the query

Goal: report a point uniformly at random from ⋃𝒢𝒢 = ⋃𝐹𝐹∈𝒢𝒢 𝐹𝐹
• Runtime of |𝒢𝒢|, (e.g. in LSH: the number of hash functions 𝐿𝐿)

Other applications:
• Sampling from neighbors of a subset of vertices in a graph
• Uniform sampling for range searching

Basic Algorithm

• Nearest neighbor

• Sampling version/ fair version

• Applications

• Algorithms
• Basic Algorithm
• Improving the dependence on 𝜖𝜖
• Handling Outliers
• Improving the dependence on the neighborhood

Algorithm

How to output a random neighbor from ⋃𝒢𝒢 = ⋃𝐹𝐹∈𝒢𝒢 𝐹𝐹

1. Choose a set 𝐹𝐹 ∈ 𝒢𝒢 w.p. ∝ |𝐹𝐹|
2. Choose a uniformly random point in 𝐹𝐹

Algorithm

How to output a random neighbor from ⋃𝒢𝒢 = ⋃𝐹𝐹∈𝒢𝒢 𝐹𝐹

1. Choose a set 𝐹𝐹 ∈ 𝒢𝒢 w.p. ∝ |𝐹𝐹|
2. Choose a uniformly random point in 𝐹𝐹
Each point is picked w.p. proportional to its degree 𝑑𝑑𝑝𝑝

Number of sets in 𝒢𝒢 that
𝒑𝒑 appears in

Algorithm

How to output a random neighbor from ⋃𝒢𝒢 = ⋃𝐹𝐹∈𝒢𝒢 𝐹𝐹

1. Choose a set 𝐹𝐹 ∈ 𝒢𝒢 w.p. ∝ |𝐹𝐹|
2. Choose a uniformly random point in 𝐹𝐹
Each point is picked w.p. proportional to its degree 𝑑𝑑𝑝𝑝

3. Keep 𝑝𝑝 with probability 1
𝑑𝑑𝑝𝑝

, o.w. repeat

Algorithm

How to output a random neighbor from ⋃𝒢𝒢 = ⋃𝐹𝐹∈𝒢𝒢 𝐹𝐹

1. Choose a set 𝐹𝐹 ∈ 𝒢𝒢 w.p. ∝ |𝐹𝐹|
2. Choose a uniformly random point in 𝐹𝐹
Each point is picked w.p. proportional to its degree 𝑑𝑑𝑝𝑝

3. Keep 𝑝𝑝 with probability 1
𝑑𝑑𝑝𝑝

, o.w. repeat

 Uniform probability

Algorithm

How to output a random neighbor from ⋃𝒢𝒢 = ⋃𝐹𝐹∈𝒢𝒢 𝐹𝐹

1. Choose a set 𝐹𝐹 ∈ 𝒢𝒢 w.p. ∝ |𝐹𝐹|
2. Choose a uniformly random point in 𝐹𝐹
Each point is picked w.p. proportional to its degree 𝑑𝑑𝑝𝑝

3. Keep 𝑝𝑝 with probability 1
𝑑𝑑𝑝𝑝

, o.w. repeat

 Uniform probability
 Need to spend 𝑂𝑂(𝐿𝐿) to find the degree

𝑳𝑳 = |𝒢𝒢|

Algorithm

How to output a random neighbor from ⋃𝒢𝒢 = ⋃𝐹𝐹∈𝒢𝒢 𝐹𝐹

1. Choose a set 𝐹𝐹 ∈ 𝒢𝒢 w.p. ∝ |𝐹𝐹|
2. Choose a uniformly random point in 𝐹𝐹
Each point is picked w.p. proportional to its degree 𝑑𝑑𝑝𝑝

3. Keep 𝑝𝑝 with probability 1
𝑑𝑑𝑝𝑝

, o.w. repeat

 Uniform probability
 Need to spend 𝑂𝑂(𝐿𝐿) to find the degree
Might need 𝑂𝑂 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑂𝑂(𝐿𝐿) samples
 Total time is 𝑂𝑂(𝐿𝐿2)

𝑳𝑳 = |𝒢𝒢|

Approximate the degree 𝑑𝑑𝑝𝑝
Sample 𝑂𝑂(𝐿𝐿

𝑑𝑑𝑝𝑝⋅𝜖𝜖2
) sets out of 𝐿𝐿 sets in 𝒢𝒢 to (1 + 𝜖𝜖)-approximate the degree. 𝑳𝑳 = |𝒢𝒢|

Approximate the degree 𝑑𝑑𝑝𝑝
Sample 𝑂𝑂(𝐿𝐿

𝑑𝑑𝑝𝑝⋅𝜖𝜖2
) sets out of 𝐿𝐿 sets in 𝒢𝒢 to (1 + 𝜖𝜖)-approximate the degree.

 Still if the degree is low this takes 𝑂𝑂(𝐿𝐿) samples.

𝑳𝑳 = |𝒢𝒢|

Approximate the degree 𝑑𝑑𝑝𝑝
Sample 𝑂𝑂(𝐿𝐿

𝑑𝑑𝑝𝑝⋅𝜖𝜖2
) sets out of 𝐿𝐿 sets in 𝒢𝒢 to (1 + 𝜖𝜖)-approximate the degree.

 Still if the degree is low this takes 𝑂𝑂(𝐿𝐿) samples.

Case 1: Small degree 𝒅𝒅𝒑𝒑:
• More samples are required to estimate
• Reject with lower probability -> Fewer queries of this type

𝑳𝑳 = |𝒢𝒢|

Keep 𝑝𝑝 with probability 1
𝑑𝑑𝑝𝑝

Approximate the degree 𝑑𝑑𝑝𝑝
Sample 𝑂𝑂(𝐿𝐿

𝑑𝑑𝑝𝑝⋅𝜖𝜖2
) sets out of 𝐿𝐿 sets in 𝒢𝒢 to (1 + 𝜖𝜖)-approximate the degree.

 Still if the degree is low this takes 𝑂𝑂(𝐿𝐿) samples.

Case 1: Small degree 𝒅𝒅𝒑𝒑:
• More samples are required to estimate
• Reject with lower probability -> Fewer queries of this type

Case 2: Large degree 𝒅𝒅𝒑𝒑:
• Fewer samples are required to estimate
• Reject with higher probability -> More queries of this type

𝑳𝑳 = |𝒢𝒢|

Keep 𝑝𝑝 with probability 1
𝑑𝑑𝑝𝑝

Approximate the degree 𝑑𝑑𝑝𝑝
Sample 𝑂𝑂(𝐿𝐿

𝑑𝑑𝑝𝑝⋅𝜖𝜖2
) sets out of 𝐿𝐿 sets in 𝒢𝒢 to (1 + 𝜖𝜖)-approximate the degree.

 Still if the degree is low this takes 𝑂𝑂(𝐿𝐿) samples.

Case 1: Small degree 𝒅𝒅𝒑𝒑:
• More samples are required to estimate
• Reject with lower probability -> Fewer queries of this type

Case 2: Large degree 𝒅𝒅𝒑𝒑:
• Fewer samples are required to estimate
• Reject with higher probability -> More queries of this type

 This decreases 𝑂𝑂(𝐿𝐿2) runtime to �𝑂𝑂(𝐿𝐿)

𝑳𝑳 = |𝒢𝒢|

Keep 𝑝𝑝 with probability 1
𝑑𝑑𝑝𝑝

Approximate the degree 𝑑𝑑𝑝𝑝
Sample 𝑂𝑂(𝐿𝐿

𝑑𝑑𝑝𝑝⋅𝜖𝜖2
) sets out of 𝐿𝐿 sets in 𝒢𝒢 to (1 + 𝜖𝜖)-approximate the degree.

 Still if the degree is low this takes 𝑂𝑂(𝐿𝐿) samples.

Case 1: Small degree 𝒅𝒅𝒑𝒑:
• More samples are required to estimate
• Reject with lower probability -> Fewer queries of this type

Case 2: Large degree 𝒅𝒅𝒑𝒑:
• Fewer samples are required to estimate
• Reject with higher probability -> More queries of this type

 This decreases 𝑂𝑂(𝐿𝐿2) runtime to �𝑂𝑂(𝐿𝐿)

 Large dependency on 𝜖𝜖 of the form 𝑂𝑂(1
𝜖𝜖2

)

𝑳𝑳 = |𝒢𝒢|

Keep 𝑝𝑝 with probability 1
𝑑𝑑𝑝𝑝

Improving the dependence on 𝜖𝜖
From 1/𝜖𝜖2 to log(1/𝜖𝜖)

• Nearest neighbor

• Sampling version/ fair version

• Applications

• Algorithms
• Basic Algorithm
• Improving the dependence on 𝜖𝜖
• Handling Outliers
• Improving the dependence on the neighborhood

𝐿𝐿 = |𝒢𝒢| setsGoal: A procedure that given a sample 𝑝𝑝 out of the 𝐿𝐿 sets in 𝒢𝒢
• Keeps a sample 𝑝𝑝 with probability 1

𝑑𝑑𝑝𝑝

• In time �𝑂𝑂(𝐿𝐿
𝑑𝑑𝑝𝑝

)

𝐿𝐿 = |𝒢𝒢| setsGoal: A procedure that given a sample 𝑝𝑝 out of the 𝐿𝐿 sets in 𝒢𝒢
• Keeps a sample 𝑝𝑝 with probability 1

𝑑𝑑𝑝𝑝

• In time �𝑂𝑂(𝐿𝐿
𝑑𝑑𝑝𝑝

)
Need to repeat ≈ 𝑑𝑑𝑝𝑝 times

𝐿𝐿 = |𝒢𝒢| setsGoal: A procedure that given a sample 𝑝𝑝 out of the 𝐿𝐿 sets in 𝒢𝒢
• Keeps a sample 𝑝𝑝 with probability 1

𝑑𝑑𝑝𝑝

• In time �𝑂𝑂(𝐿𝐿
𝑑𝑑𝑝𝑝

)
Need to repeat ≈ 𝑑𝑑𝑝𝑝 times

Total runtime would be ≈ 𝑑𝑑𝑝𝑝 ⋅ �𝑂𝑂
𝐿𝐿
𝑑𝑑𝑝𝑝

= �𝑂𝑂(𝐿𝐿)

• Sample sets from 𝒢𝒢 until you find a set 𝐹𝐹 such that 𝑝𝑝 ∈ 𝐹𝐹

𝐿𝐿 = |𝒢𝒢| setsGoal: A procedure that given a sample 𝑝𝑝 out of the 𝐿𝐿 sets in 𝒢𝒢
• Keeps a sample 𝑝𝑝 with probability 1

𝑑𝑑𝑝𝑝

• In time �𝑂𝑂(𝐿𝐿
𝑑𝑑𝑝𝑝

)

Assuming one can check if 𝑝𝑝 ∈ 𝐹𝐹 in
constant time

• Sample sets from 𝒢𝒢 until you find a set 𝐹𝐹 such that 𝑝𝑝 ∈ 𝐹𝐹
• Assume it happens at iteration 𝑖𝑖

𝐿𝐿 = |𝒢𝒢| setsGoal: A procedure that given a sample 𝑝𝑝 out of the 𝐿𝐿 sets in 𝒢𝒢
• Keeps a sample 𝑝𝑝 with probability 1

𝑑𝑑𝑝𝑝

• In time �𝑂𝑂(𝐿𝐿
𝑑𝑑𝑝𝑝

)

𝐸𝐸 𝑖𝑖 =
𝐿𝐿
𝑑𝑑𝑝𝑝

• Sample sets from 𝒢𝒢 until you find a set 𝐹𝐹 such that 𝑝𝑝 ∈ 𝐹𝐹
• Assume it happens at iteration 𝑖𝑖

• Keep the sample 𝑝𝑝 with probability 𝑖𝑖
𝐿𝐿
≈ 𝐿𝐿

𝑑𝑑𝑝𝑝
⋅ 1
𝐿𝐿

= 1/𝑑𝑑𝑝𝑝

𝐿𝐿 = |𝒢𝒢| setsGoal: A procedure that given a sample 𝑝𝑝 out of the 𝐿𝐿 sets in 𝒢𝒢
• Keeps a sample 𝑝𝑝 with probability 1

𝑑𝑑𝑝𝑝

• In time �𝑂𝑂(𝐿𝐿
𝑑𝑑𝑝𝑝

)

𝐸𝐸 𝑖𝑖 =
𝐿𝐿
𝑑𝑑𝑝𝑝

• Sample sets from 𝒢𝒢 until you find a set 𝐹𝐹 such that 𝑝𝑝 ∈ 𝐹𝐹
• Assume it happens at iteration 𝑖𝑖

• Keep the sample 𝑝𝑝 with probability 𝑖𝑖
𝐿𝐿
≈ 𝐿𝐿

𝑑𝑑𝑝𝑝
⋅ 1
𝐿𝐿

= 1/𝑑𝑑𝑝𝑝

• Correct except that 𝑖𝑖/𝐿𝐿 could be larger than 1

𝐿𝐿 = |𝒢𝒢| setsGoal: A procedure that given a sample 𝑝𝑝 out of the 𝐿𝐿 sets in 𝒢𝒢
• Keeps a sample 𝑝𝑝 with probability 1

𝑑𝑑𝑝𝑝

• In time �𝑂𝑂(𝐿𝐿
𝑑𝑑𝑝𝑝

)

𝐸𝐸 𝑖𝑖 =
𝐿𝐿
𝑑𝑑𝑝𝑝

• Sample sets from 𝒢𝒢 until you find a set 𝐹𝐹 such that 𝑝𝑝 ∈ 𝐹𝐹
• Assume it happens at iteration 𝑖𝑖

• Keep the sample 𝑝𝑝 with probability 𝑖𝑖
𝐿𝐿
≈ 𝐿𝐿

𝑑𝑑𝑝𝑝
⋅ 1
𝐿𝐿

= 1/𝑑𝑑𝑝𝑝

• Correct except that 𝑖𝑖/𝐿𝐿 could be larger than 1

• Keep the sample with probability 𝑖𝑖
Δ⋅𝐿𝐿

≈ 1
Δ⋅𝑑𝑑𝑝𝑝

• Still uniform
• Probability that 𝑖𝑖 > (Δ𝐿𝐿) is exponentially small in Δ
• Sufficient to set Δ = log 1

𝜖𝜖

𝐿𝐿 = |𝒢𝒢| setsGoal: A procedure that given a sample 𝑝𝑝 out of the 𝐿𝐿 sets in 𝒢𝒢
• Keeps a sample 𝑝𝑝 with probability 1

𝑑𝑑𝑝𝑝

• In time �𝑂𝑂(𝐿𝐿
𝑑𝑑𝑝𝑝

)

The number of iterations increases by a factor of Δ

𝐸𝐸 𝑖𝑖 =
𝐿𝐿
𝑑𝑑𝑝𝑝

So far

• Get a sample uniformly at random from the union of the buckets

• ⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 is roughly the neighborhood
• Contains all points within distance 𝑟𝑟
• Contains at most 𝐿𝐿 outlier points (farther than 𝑐𝑐𝑟𝑟)

• What about the outliers?

Handling Outliers

• Nearest neighbor

• Sampling version/ fair version

• Applications

• Algorithms
• Basic Algorithm
• Improving the dependence on 𝜖𝜖
• Handling Outliers
• Improving the dependence on the neighborhood

Sampling from a sub-collection of sets with outliers

Preprocess: a collection ℱ of subsets of a universe 𝑈𝑈

Sampling from a sub-collection of sets with outliers

Preprocess: a collection ℱ of subsets of a universe 𝑈𝑈

Query: a sub-collection 𝒢𝒢 ⊆ ℱ , and a set of outliers 𝑂𝑂 ⊆ 𝑈𝑈, s.t.
∑𝑙𝑙∈𝑂𝑂 𝑑𝑑𝑙𝑙 𝒢𝒢 ≤ 𝑚𝑚𝑂𝑂

Sampling from a sub-collection of sets with outliers

Preprocess: a collection ℱ of subsets of a universe 𝑈𝑈

Query: a sub-collection 𝒢𝒢 ⊆ ℱ , and a set of outliers 𝑂𝑂 ⊆ 𝑈𝑈, s.t.
∑𝑙𝑙∈𝑂𝑂 𝑑𝑑𝑙𝑙 𝒢𝒢 ≤ 𝑚𝑚𝑂𝑂

Goal: report a point uniformly at random from ⋃𝒢𝒢 ∖ 𝑂𝑂 = ⋃𝐹𝐹∈𝒢𝒢 𝐹𝐹 ∖ 𝑂𝑂

Sampling from a sub-collection of sets with outliers

Preprocess: a collection ℱ of subsets of a universe 𝑈𝑈

Query: a sub-collection 𝒢𝒢 ⊆ ℱ , and a set of outliers 𝑂𝑂 ⊆ 𝑈𝑈, s.t.
∑𝑙𝑙∈𝑂𝑂 𝑑𝑑𝑙𝑙 𝒢𝒢 ≤ 𝑚𝑚𝑂𝑂

Goal: report a point uniformly at random from ⋃𝒢𝒢 ∖ 𝑂𝑂 = ⋃𝐹𝐹∈𝒢𝒢 𝐹𝐹 ∖ 𝑂𝑂
• Runtime of 𝒢𝒢 + 𝑚𝑚𝑙𝑙

Trivial solution:
• Whenever you see an outlier sample, ignore it and repeat.
• Runtime in the worst case: 𝒢𝒢 ⋅ 𝑚𝑚𝑂𝑂

Sampling from a sub-collection of sets with outliers

Preprocess: a collection ℱ of subsets of a universe 𝑈𝑈

Query: a sub-collection 𝒢𝒢 ⊆ ℱ , and a set of outliers 𝑂𝑂 ⊆ 𝑈𝑈, s.t.
∑𝑙𝑙∈𝑂𝑂 𝑑𝑑𝑙𝑙 𝒢𝒢 ≤ 𝑚𝑚𝑂𝑂

Goal: report a point uniformly at random from ⋃𝒢𝒢 ∖ 𝑂𝑂 = ⋃𝐹𝐹∈𝒢𝒢 𝐹𝐹 ∖ 𝑂𝑂
• Runtime of 𝓖𝓖 + 𝒎𝒎𝒐𝒐

Trivial solution:
• Whenever you see an outlier sample, ignore it and repeat.
• Runtime in the worst case: 𝒢𝒢 ⋅ 𝑚𝑚𝑂𝑂

Goal: Runtime of 𝒢𝒢 + 𝑚𝑚𝑙𝑙

• Implement each bucket (each set in ℱ) as an array

2, 4, 6, 9, 3

Cnt=5

Goal: Runtime of 𝒢𝒢 + 𝑚𝑚𝑙𝑙

• Implement each bucket (each set in ℱ) as an array

• Once we encounter an outlier, swap it with the last element of the array.

• Update the count of that bucket/set

2, 4, 6, 9, 3

Cnt=5

Goal: Runtime of 𝒢𝒢 + 𝑚𝑚𝑙𝑙

• Implement each bucket (each set in ℱ) as an array

• Once we encounter an outlier, swap it with the last element of the array.

• Update the count of that bucket/set

2, 3, 6, 9, 4

Cnt=4

Goal: Runtime of 𝒢𝒢 + 𝑚𝑚𝑙𝑙

• Implement each bucket (each set in ℱ) as an array

• Once we encounter an outlier, swap it with the last element of the array.

• Update the count of that bucket/set
Need to (dynamically) sample a set with probability

proportional to its active size

Goal: Runtime of 𝒢𝒢 + 𝑚𝑚𝑙𝑙

• Implement each bucket (each set in ℱ) as an array

• Once we encounter an outlier, swap it with the last element of the array.

• Update the count of that bucket/set

At the query time upon receiving 𝒢𝒢,

• Build a tree on with 𝐿𝐿 = |𝒢𝒢| leaves containing the count of the sets in 𝒢𝒢

Need to (dynamically) sample a set with probability

proportional to its active size

Goal: Runtime of 𝒢𝒢 + 𝑚𝑚𝑙𝑙

• Implement each bucket (each set in ℱ) as an array

• Once we encounter an outlier, swap it with the last element of the array.

• Update the count of that bucket/set

At the query time upon receiving 𝒢𝒢,

• Build a tree on with 𝐿𝐿 = |𝒢𝒢| leaves containing the count of the sets in 𝒢𝒢

• Each node keeps the sum of the counts of the leaves in its subtree

Need to (dynamically) sample a set with probability

proportional to its active size

Goal: Runtime of 𝒢𝒢 + 𝑚𝑚𝑙𝑙

• Implement each bucket (each set in ℱ) as an array

• Once we encounter an outlier, swap it with the last element of the array.

• Update the count of that bucket/set

At the query time upon receiving 𝒢𝒢,

• Build a tree on with 𝐿𝐿 = |𝒢𝒢| leaves containing the count of the sets in 𝒢𝒢

• Each node keeps the sum of the counts of the leaves in its subtree

• Taking a sample from sets can be done by moving down the tree from the root

Need to (dynamically) sample a set with probability

proportional to its active size

Goal: Runtime of 𝒢𝒢 + 𝑚𝑚𝑙𝑙

• Implement each bucket (each set in ℱ) as an array

• Once we encounter an outlier, swap it with the last element of the array.

• Update the count of that bucket/set

At the query time upon receiving 𝒢𝒢,

• Build a tree on with 𝐿𝐿 = |𝒢𝒢| leaves containing the count of the sets in 𝒢𝒢

• Each node keeps the sum of the counts of the leaves in its subtree

• Taking a sample from sets can be done by moving down the tree from the root

• Update the counts in time 𝑂𝑂(log𝐿𝐿)

Need to (dynamically) sample a set with probability

proportional to its active size

Goal: Runtime of 𝒢𝒢 + 𝑚𝑚𝑙𝑙

• Implement each bucket (each set in ℱ) as an array

• Once we encounter an outlier, swap it with the last element of the array.

• Update the count of that bucket/set

At the query time upon receiving 𝒢𝒢,

• Build a tree on with 𝐿𝐿 = |𝒢𝒢| leaves containing the count of the sets in 𝒢𝒢

• Each node keeps the sum of the counts of the leaves in its subtree

• Taking a sample from sets can be done by moving down the tree from the root

• Update the counts in time 𝑂𝑂(log𝐿𝐿)

 We see each outlier 𝑜𝑜 ∈ 𝑂𝑂 at most 𝑑𝑑𝑙𝑙 times
 Total number of times we encounter an outlier is 𝑚𝑚𝑙𝑙

So far

• Get a sample uniformly at random from the union of the buckets

• ⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 is roughly the neighborhood
• Contains all points within distance 𝑟𝑟
• Contains at most 𝐿𝐿 outlier points (farther than 𝑐𝑐𝑟𝑟)

• What about the outliers?
• Total degree of outliers is 𝑂𝑂(𝐿𝐿)
• Get a sample in time �𝑂𝑂 𝒢𝒢 + 𝑚𝑚𝑙𝑙 = �𝑂𝑂 𝐿𝐿 + 𝐿𝐿 = �𝑂𝑂(𝐿𝐿)

Results on (1 + 𝜖𝜖)-Approximate Fair NN

 Get a sample from the union of the buckets
 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

 Dependence on 𝜖𝜖 is O(log(1
𝜖𝜖
))

 Black-box reduction

Domain Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 +
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

�𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

𝑞𝑞

𝑟𝑟
𝑐𝑐𝑟𝑟

Results on (1 + 𝜖𝜖)-Approximate Fair NN

 Get a sample from the union of the buckets
 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

 Dependence on 𝜖𝜖 is O(log(1
𝜖𝜖
))

 Black-box reduction

Domain Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 +
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

�𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

𝑞𝑞

𝑟𝑟
𝑐𝑐𝑟𝑟

Exact Neighborhood?

• Treat the points within distance 𝑟𝑟 and 𝑐𝑐𝑟𝑟 also as outliers.
• Unlucky event: we hit all the 𝑛𝑛(𝑞𝑞, 𝑐𝑐𝑟𝑟) outliers first
• Total runtime: �𝑂𝑂 𝒢𝒢 + 𝑚𝑚𝑙𝑙 = �𝑂𝑂 𝐿𝐿 + 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟 − |𝑁𝑁 𝑞𝑞, 𝑟𝑟 | =
�𝑂𝑂(𝐿𝐿 + 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟)

Results on (1 + 𝜖𝜖)-Approximate Fair NN

 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

 Dependence on 𝜖𝜖 is O(log(1
𝜖𝜖
))

 Black-box reduction

Domain Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

�𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

Results on (1 + 𝜖𝜖)-Approximate Fair NN

 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

 Dependence on 𝜖𝜖 is O(log(1
𝜖𝜖
))

 Black-box reduction

Domain Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

�𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

Improve to
𝑻𝑻𝑨𝑨𝑵𝑵𝑵𝑵 + 𝑵𝑵 𝒒𝒒,𝒄𝒄𝒓𝒓

𝑵𝑵 𝒒𝒒,𝒓𝒓

Improving the dependence on the density of the neighborhood
From 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟 to 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑵𝑵 𝒒𝒒,𝒄𝒄𝒓𝒓

𝑵𝑵 𝒒𝒒,𝒓𝒓

• Nearest neighbor

• Sampling version/ fair version

• Applications

• Algorithms
• Basic Algorithm
• Improving the dependence on 𝜖𝜖
• Handling Outliers
• Improving the dependence on the neighborhood

High Level Idea:

• Partition the elements ⋃𝒢𝒢 randomly into 𝑘𝑘 bins s.t.

• Each bin gets 𝑂𝑂 1 good elements, i.e., from ⋃𝒢𝒢 ∖ 𝑂𝑂

• Each bin gets 𝑂𝑂(𝑂𝑂
⋃𝒢𝒢∖𝑂𝑂

) points from the outliers

• Time will improve to �𝑂𝑂 𝒢𝒢 + 𝑚𝑚𝑙𝑙 = (𝐿𝐿 + 𝑵𝑵 𝒒𝒒,𝒄𝒄𝒓𝒓
𝑵𝑵 𝒒𝒒,𝒓𝒓

)

More Precisely,

Preprocess:

• To partition all elements in 𝑈𝑈 among 𝑘𝑘 bins
• Give each of the elements in 𝑈𝑈 a random unique rank

from 1 to 𝑁𝑁 = |𝑈𝑈|, (i.e, pick a random permutation)
• Each set in ℱ stores its elements in sorted order

More Precisely,

Preprocess:

• To partition all elements in 𝑈𝑈 among 𝑘𝑘 bins
• Give each of the elements in 𝑈𝑈 a random unique rank

from 1 to 𝑁𝑁 = |𝑈𝑈|, (i.e, pick a random permutation)
• Each set in ℱ stores its elements in sorted order

Query Time:
• Consider 𝑘𝑘 bins based on the ranks, i.e.,

Bin 𝑖𝑖 = [𝐴𝐴
𝑘𝑘
𝑖𝑖 , 𝐴𝐴

𝑘𝑘
𝑖𝑖 + 1]

More Precisely,

Preprocess:

• To partition all elements in 𝑈𝑈 among 𝑘𝑘 bins
• Give each of the elements in 𝑈𝑈 a random unique rank

from 1 to 𝑁𝑁 = |𝑈𝑈|, (i.e, pick a random permutation)
• Each set in ℱ stores its elements in sorted order

Query Time:
• Consider 𝑘𝑘 bins based on the ranks, i.e.,

Bin 𝑖𝑖 = [𝐴𝐴
𝑘𝑘
𝑖𝑖 , 𝐴𝐴

𝑘𝑘
𝑖𝑖 + 1]

• Select one bin (almost) uniformly at random
• Get a sample from the sampled bin

More Precisely,

Preprocess:

• To partition all elements in 𝑈𝑈 among 𝑘𝑘 bins
• Give each of the elements in 𝑈𝑈 a random unique rank

from 1 to 𝑁𝑁 = |𝑈𝑈|, (i.e, pick a random permutation)
• Each set in ℱ stores its elements in sorted order

Query Time:
• Consider 𝑘𝑘 bins based on the ranks, i.e.,

Bin 𝑖𝑖 = [𝐴𝐴
𝑘𝑘
𝑖𝑖 , 𝐴𝐴

𝑘𝑘
𝑖𝑖 + 1]

• Select one bin (almost) uniformly at random
• Get a sample from the sampled bin

How to choose 𝒌𝒌

• 𝒌𝒌 large: many bins get no element from ⋃𝒢𝒢

• 𝒌𝒌 small: finding an element in ⋃𝒢𝒢 that is in a particular bin takes a long time

 Set 𝒌𝒌 roughly equal to |⋃𝒢𝒢|. Then each bin has roughly 𝑂𝑂(1) elements from ⋃𝒢𝒢

 Don’t know |⋃𝒢𝒢| in advance

 Count the number of distinct elements using a sketch for Distinct Elements Problem

More Precisely,

Preprocess:

• To partition all elements in 𝑈𝑈 among 𝑘𝑘 bins
• Give each of the elements in 𝑈𝑈 a random unique rank

from 1 to 𝑁𝑁 = |𝑈𝑈|, (i.e, pick a random permutation)
• Each set in ℱ stores its elements in sorted order
• Keep a sketch for distinct elements

Query Time:
• Consider 𝑘𝑘 bins based on the ranks, i.e.,

Bin 𝑖𝑖 = [𝐴𝐴
𝑘𝑘
𝑖𝑖 , 𝐴𝐴

𝑘𝑘
𝑖𝑖 + 1]

• Select one bin (almost) uniformly at random
• Get a sample from the sampled bin

More Precisely,

Preprocess:

• To partition all elements in 𝑈𝑈 among 𝑘𝑘 bins
• Give each of the elements in 𝑈𝑈 a random unique rank

from 1 to 𝑁𝑁 = |𝑈𝑈|, (i.e, pick a random permutation)
• Each set in ℱ stores its elements in sorted order
• Keep a sketch for distinct elements

Query Time:
• Consider 𝑘𝑘 bins based on the ranks, i.e.,

Bin 𝑖𝑖 = [𝐴𝐴
𝑘𝑘
𝑖𝑖 , 𝐴𝐴

𝑘𝑘
𝑖𝑖 + 1]

• Select one bin (almost) uniformly at random
• Get a sample from the sampled bin

How to choose 𝒌𝒌

• 𝒌𝒌 large: many bins get no element from ⋃𝒢𝒢

• 𝒌𝒌 small: finding an element in ⋃𝒢𝒢 that is in a particular bin takes a long time

 Set 𝒌𝒌 roughly equal to |⋃𝒢𝒢|. Then each bin has roughly 𝑂𝑂(1) elements from ⋃𝒢𝒢

 Don’t know |⋃𝒢𝒢| in advance

 Count the number of distinct elements using a sketch for Distinct Elements Problem

 Set 𝒌𝒌 = 𝒏𝒏(𝒒𝒒, 𝒓𝒓)
 Number of outliers in a bin is at most 𝒏𝒏(𝒒𝒒, 𝒄𝒄𝒓𝒓)/𝒏𝒏(𝒒𝒒, 𝒓𝒓)

More Precisely,

Preprocess:

• To partition all elements in 𝑈𝑈 among 𝑘𝑘 bins
• Give each of the elements in 𝑈𝑈 a random unique rank

from 1 to 𝑁𝑁 = |𝑈𝑈|, (i.e, pick a random permutation)
• Each set in ℱ stores its elements in sorted order
• Keep a sketch for distinct elements

Query Time:
• Consider 𝑘𝑘 bins based on the ranks, i.e.,

Bin 𝑖𝑖 = [𝐴𝐴
𝑘𝑘
𝑖𝑖 , 𝐴𝐴

𝑘𝑘
𝑖𝑖 + 1]

• Select one bin (almost) uniformly at random
• Get a sample from the sampled bin

How to sample from ⋃𝒢𝒢 ∩ 𝑏𝑏𝑖𝑖𝑛𝑛𝑖𝑖?

• One can iterate over 𝐹𝐹 ∩ 𝐵𝐵𝑖𝑖𝑛𝑛𝑖𝑖 in time 𝑂𝑂 log𝑛𝑛 + 𝐹𝐹 ∩ 𝐵𝐵𝑖𝑖𝑛𝑛𝑖𝑖
• Because the elements are kept sorted in 𝐹𝐹
• And the Bin is continuous

Compute |𝐹𝐹 ∩ 𝐵𝐵𝑖𝑖𝑛𝑛𝑖𝑖| for each 𝐹𝐹 ∈ 𝒢𝒢
Build a BST on these counts, sample from them

Results on (1 + 𝜖𝜖)-Approximate Fair NN

 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

 Dependence on 𝜖𝜖 is O(log(1
𝜖𝜖
))

 Black-box reduction

 Our approach solves a more general problem

 Experiments

Domain Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 +
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

�𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

Summary

 Defined NN problem with respect to fairness, i.e., the sampling variant
• Applications of sampling NN

 How to sample from a sub-collection of sets
 Improve dependency on 𝜖𝜖
 How to handle outliers
 Improve dependency on the density parameter of the neighborhood

 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

 Dependence on 𝜖𝜖 is O(log(1
𝜖𝜖
))

 Black-box reduction

 Our approach solves a more general problem

 Experiments

Open Problem:

o Finding the optimal dependency on the density parameter

Domain Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 +
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

�𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

Thanks
Questions?

Summary

	Sampling a Neighbor in High Dimensions�Who is the fairest of them all?
	Main motivation in the context of Fairness
	Main motivation in the context of Fairness
	Main motivation in the context of Fairness
	Individual Fairness in Searching
	Individual Fairness in Searching
	Plan for the talk
	Near Neighbor
	Near Neighbor
	Near Neighbor
	Near Neighbor
	Near Neighbor
	Approximate Near Neighbor
	Approximate Near Neighbor
	Fair Near Neighbor
	Beyond Fairness: When random nearby-by is better than the nearest
	Beyond Fairness: When random nearby-by is better than the nearest
	Applications beyond Fairness: KNN - Classification
	Applications beyond Fairness: KNN - Classification
	Applications beyond Fairness: KNN - Classification
	Beyond Fairness: When random nearby-by is better than the nearest
	Beyond Fairness: When random nearby-by is better than the nearest
	Applications beyond Fairness: Filtered Searching
	Applications beyond Fairness: Filtered Searching
	Beyond Fairness: When random nearby-by is better than the nearest
	Beyond Fairness: When random nearby-by is better than the nearest
	Problem formulation and our results
	Fair Near Neighbor
	Approximately Fair Near Neighbor
	Further notes
	Further notes
	Results on (1+𝜖)-Approximate Fair NN
	Results on (1+𝜖)-Approximate Fair NN
	Results on (1+𝜖)-Approximate Fair NN
	Results on (1+𝜖)-Approximate Fair NN
	Results on (1+𝜖)-Approximate Fair NN
	Results on (1+𝜖)-Approximate Fair NN
	Locality Sensitive Hashing (LSH) [Indyk, Motwani’98]�
	Locality Sensitive Hashing (LSH)
	Locality Sensitive Hashing (LSH)
	Locality Sensitive Hashing (LSH)
	Locality Sensitive Hashing (LSH)
	Locality Sensitive Hashing (LSH)
	Locality Sensitive Hashing (LSH)
	A more general problem
	Sampling from a sub-collection of sets
	Sampling from a sub-collection of sets
	Sampling from a sub-collection of sets
	Sampling from a sub-collection of sets
	Sampling from a sub-collection of sets
	Basic Algorithm
	Algorithm
	Algorithm
	Algorithm
	Algorithm
	Algorithm
	Algorithm
	Approximate the degree 𝑑 𝑝
	Approximate the degree 𝑑 𝑝
	Approximate the degree 𝑑 𝑝
	Approximate the degree 𝑑 𝑝
	Approximate the degree 𝑑 𝑝
	Approximate the degree 𝑑 𝑝
	Improving the dependence on 𝜖
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	So far
	Handling Outliers
	Sampling from a sub-collection of sets with outliers
	Sampling from a sub-collection of sets with outliers
	Sampling from a sub-collection of sets with outliers
	Sampling from a sub-collection of sets with outliers
	Sampling from a sub-collection of sets with outliers
	Goal: Runtime of 𝒢 + 𝑚 𝑜
	Goal: Runtime of 𝒢 + 𝑚 𝑜
	Goal: Runtime of 𝒢 + 𝑚 𝑜
	Goal: Runtime of 𝒢 + 𝑚 𝑜
	Goal: Runtime of 𝒢 + 𝑚 𝑜
	Goal: Runtime of 𝒢 + 𝑚 𝑜
	Goal: Runtime of 𝒢 + 𝑚 𝑜
	Goal: Runtime of 𝒢 + 𝑚 𝑜
	Goal: Runtime of 𝒢 + 𝑚 𝑜
	So far
	Results on (1+𝜖)-Approximate Fair NN
	Results on (1+𝜖)-Approximate Fair NN
	Exact Neighborhood?
	Results on (1+𝜖)-Approximate Fair NN
	Results on (1+𝜖)-Approximate Fair NN
	Improving the dependence on the density of the neighborhood
	High Level Idea:
	More Precisely,
	More Precisely,
	More Precisely,
	More Precisely,
	More Precisely,
	More Precisely,
	More Precisely,
	How to sample from ⋃𝒢∩𝑏𝑖 𝑛 𝑖 ?
	Results on (1+𝜖)-Approximate Fair NN
	Summary
	Summary

